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Abstract. Many aspects of accelerator control require a complex procedure that includes
planning, control, and re-evaluation of the process model. As control actions are performed
new information is obtained from the system which allows the model to be adjusted, In
many cases, observed errors in the model suggest certain control actions for gathering new
information used for further refining the model. The process of comparing predicted with
observed behavior to produce testable hypotheses for adjusting the predictive model is
called abductive mode! refinement. This paper describes our ideas for applying abductive
model refinement to beamline tuning tasks, including minimum steering through a set of
quadrupole lenses and developing a waist at a specified location in abeamline,

TRADITIONAL AND KNOWLEDGE BASED CONTROL

The development of a theory and methodology for model refinement
comprises one element of a larger research project: the development of an
hierarchically structured architecture for distributed adaptive control. Our
approach, described elsewhere (1), integrates knowledge based methods, includ-
ing the explicit representation of control knowledge and control models, to
support an adaptive capability. The view of control upon which this architecture
1s based is significantly different from the traditional view.

Traditional control theory views process and controller as strongly separated
components of a control system. The process takes inputs from the environment
and the controller and produces outputs which are then operated on by the
controller to produce new inputs. Missing from this model of control is a view of
the process and controller together as comprising a mutually dependent system
with potentially time-variant behavior. Even in adaptive systems, where the
controller adjusts its response function to minimize system error, the control
system lacks the ability to recognize that a particular control method can no
longer function successfully and to modify its internal representations and control
algorithms accordingly. This is an acceptable model for-control-in simple stable
systems where predictable low order functions can be minimized by traditional
control methods (e.g., PID, FAM, etc.). Figure la illustrates the traditional
control paradigm.
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The whole system view of control includes structures for modifying internal
control processes based on information about both the process and the controller.
An important aspect of this paradigm is the use meta-level control in conjunction
with an explicit process model. The model is built to reflect both the state of the
phystcal system and the relationships between the physical process, the control
hardware, and the control software. The model provides a shared representational
framework between process and controller and facilitates intelligent decision
making and reasoning. Figure /5 illustrates the whole system view of control.

In the whole system view, it is also useful to employ confidence metrics
encoding the reliability or effectiveness of control methods relative to observable
states of the system. Knowledge based control systems can then select control
algorithms by matching knowledge about the system’s current state against a set
of available control algorithms indexed by their estimated effectiveness under the
current set of conditions.

From our viewpoint, model refinement is not a persistent process continually
tracking the system’s current state. Rather, it is triggered by the inability of the
system to satisfy a goal using the current model. This may occur because of the
failure of attempted control actions or due to lack of confidence in the effective-
ness of potential actions. In many cases, it may be sufficient to update model data
by making new system measurements. In other cases, however, failure to achieve
a goal is directly correlated to a mismatch between the model and the process.
Abductive model refinement is then used to diagnose and correct the deviation.

COGNITIVE FOUNDATIONS

Human experts in many domains exhibit the ability to effectively improve
their model of a given environment through exploratory action. This involves the
use of an initial rough model as a basis for planned testing and interaction
followed by a process of evaluation. The attempt to explain discrepancies



between expectations and observations generates a new understanding of the
environment that results in a “refined model.” In many cases, this process must be
repeated a number of times before a satisfactory model of the environment is

found. This cycle of exploration and model adaptation is called abductive model
refinement because it depends on abductive reasoning, i.e. reasoning that attempts
to explain the source of the differential between expectations and experience.

In our study of expert human performance in the area of particle accelerator
control we have encountered precisely this pattern of problem solving. For
example, we have found that accelerator physicists COMINISSIONING a new or
reconfigured beam line will try to understand the behavior of the system by
conducting a carefully designed sequence of experiments. Typically this involves
an attempt to produce some standard set of beam conditions at specific locations.
They employ an initial model of the accelerator beam line in conjunction with a
software modeling code such as TRANSPORT to compute some configuration of
magnet field strengths that is expected to produce the desired beam condition.
This prediction then serves as the basis of an experiment to verify the expected
beam condition based on the computed magnet settings. If the experimental
finding fails to fall within an acceptable range of accuracy, this is in fact a very
useful result. The physicist then analyzes the results in order to generate
hypotheses regarding the source of the discrepancy between prediction and
observation. This in general leads to a cycle of experimentation and explanatory
hypotheses that eventually results in an improved beam line model.

REPRESENTATIONAL AND ALGORITHMIC ISSUES

We are currently developing a set of representational schemes and algorithms
necessary to support a computational implementation of abductive model
refinement in the context of accelerator control. Active study and analysis of the
problem solving of expert accelerator physicists ' has played a key role in shaping
our current approach. We are also collaborating with these same physicists in the
development of mathematical methods for diagnostic estimation. What follows is
a brief account of our current insights and achievements.

Implementing a Model Refinement Algorithm

Abductive model refinement includes the following sequence of interrelated
steps (although not necessarily in the given order):

1. Recognition of a discrepancy between model-based prediction and observation;
2. Generation of hypotheses for explaining this discrepancy;
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3. Planning and execution of sequences of actions to test explanatory hypotheses;
4. Modification of a model based on a verified hypothesis.

Each of these steps presupposes a complex set of capabilities. Developing a
computational implementation of the model refinement process has required a
detailed understanding of patterns of reasoning involved in the second, third, and
fourth steps in particular. This has entailed a number of related research goals:

s the application or modification of artificial intelligence planning methods
to model the design of useful experiments;

* the application of abductive reasoning to generate plausible hypotheses
that explain observed discrepancies;

* a form of model-based reasoning in which conjectured model revisions
are tested for consistency with known data and causal relationships.

The high degree of compiexity of the model refinement task necessitates the
use of certain simplifying assumptions. We follow the traditional model based
reasoning approach in assuming that certain dimensions of the causal connection
structure of the physical system are fixed and known (2). These define a fixed
causal framework for reasoning without which too many diagnostic possibilities
and combinations would have to be considered.

Following the traditional representation used in model based reasoning, we
consider a model of a physical system to be a set of elements together with a
causal connection structure between elements. Each element has a set of nputs
and outputs where each output is defined as a transfer function over the inputs
together with the element’s internal state. The elements together with their causal
connections constitute a network as seen in Figure 2.

An issue of great concern for model refinement in complex systems such as
particle accelerators arises from the dependencies between beliefs. An inference
regarding some property of an element, such as a remnant field or misalignment
in 2 magnet, often depends upon a good deal of assumed knowledge about other
elements. If these assumptions are incorrect or of limited accuracy, the inference
itself is tainted. Since incremental model refinement involves the construction of
chamns of inferences, it is necessary to keep track of the evidence for inferred
beliefs as well as the degree of certainty and accuracy that such evidence
warrants. For this reason we cache inferences, recording the dependencies
between assumptions and conclusions. We use a network representation similar to
that used by a Justification Based Truth Maintenance Systems (JTMS)
architecture (3) to organize cached inferences. This allows us to immediately
determine the set of beliefs to which a revised belief is linked and reevaluate the
status of those dependent beliefs accordingly.
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Figure 2. A causal network.
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Two key issues in model revision present significant challenges. The first, the
problem of cyclic dependencies in beliefs, poses a problem from the algorithmic
point of view. Algorithms that update the numerical probabilities or confidence
levels associated with beliefs in a belief network behave erratically in the
presence of cycles, e.g., when belief 4 supports belief B, B supports C, and C
supports 4. When A4 supports C and C also indirectly supports A4 this can lead to
an incorrect calculation of the evidential weights supporting both 4 and C.
Unfortunately, belief cycles tend to permeate reasoning about models.

A second more fundamental issue is related to the problem of multiple source
errors. A recognized discrepancy between prediction and observation can derive
from a combination of errors in a model, or even worse, a sequence of causal
interactions that magnifies minor inaccuracies into significant errors. Finding
explanations for multiple source errors is not only difficult for humans; it also
poses a serious computational challenge for most abduction algorithms.

We do not believe that there is a general solution to the second problem, but
rather heuristics that are effective in finding explanations in many cases. Qur
current approach is to focus on knowledge engineering with expert accelerator
physicists in order to discover such heuristics.

One heuristic that we are currently exploring is to refine the beamline model
by identifying “islands” in the beamline that can be measured and studied in
relative isolation, i.e., in a way that is minimally dependent on assumptions about
the rest of the beamline. We have a identified a few experimental methods that
support such independent calibration techniques. Once islands of high accuracy
and confidence are constructed, the generally strategy is to cautiously extend
them, verifying them by generating predictions through the use of the usual beam
propagation and fitting algorithms and then testing those predictions against
actual beam measurements.



Consider a simple example of a method that implements the strategy
described above, i.e., to begin from and gradually extend islands in the model that
have been calibrated with a high degree of accuracy. In this example we begin by

~measuring the beam itself using a method that assumes nothing about the rest of
the model. We start with a location in the beamline that contains two screens with
a dnft space of length L between them. This is illustrated in the right half of
Figure 3. Working in one dimension, we then produce a minimum spot size at the
second screen, measuring both Xs and Xs' under this condition.

Using the matrix for a drift space and setting 5c11'/8612 = 0 corresponding to
a minimum spot size at the second screen, we can determine a number of useful
parameters: G11 at the first screen as a linear function of ©12, beam emittance (€),
as well as the position of the beam waist. Varying the current to quads o and f
(left side of Figure 3) and applying curve fitting to measured beam sizes on the
first screen allows us to calculate actual field strengths as a function of current as
well as remnant fields in o and .
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CONCLUSION

We are currently planning to test our ideas in abductive model refinement
through a series of tests at Brookhaven National Laboratory's Accelerator Test
Facility. There is reason to believe that the most difficult of these tests,
production of a specified waist condition in an undulator cavity of a Free Electron
Laser, can only be accomplished by refining the current beamline model. Future
work involves the extension and generalization of our current system into a
general architecture for accelerator control.
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